
Manual Verification and Correction of Automatically Labeled Zones:
User Interface Considerations

Glenn Pearson1 George R. Thoma2

National Library of Medicine (NLM)
Bethesda, Maryland 20894

Abstract
12

A system for automatic extraction of bibliographic
information from scanned document pages is being
developed at NLM. A goal of this system is the
automated labeling of rectangular image zones as title,
authors, abstract, etc. Software to help achieve this
goal has two broad roles. The research role
contributes to the extraction of salient features from
image or OCR data and their subsequent analysis by AI
systems being tuned for zone label categorization. The
production role embeds such functionality within the
planned production workflow. Furthermore, since
automated labeling will not be 100% reliable in the
near term, an important part of the production role is
manual verification and correction of zone
segmentation and labeling to achieve full accuracy.
 A software-development case study is presented of
“Zone Checker”, a software component that
contributes to both roles. This duality of roles
introduces multiple classes of users, with implications
for menu structure and other aspects of graphical user
interface (GUI) design. Additional design issues are
explored, particularly those specific to visualizing,
verifying, and correcting zones and their labels. An
example is how to best convey the relative reading
order among zones for image text that flows from one
column to the next.

1 Introduction to MARS, the Medical
Article Record System

1.1 Keeping MEDLINE Up to Date
One of the major accomplishments and services of the
National Library of Medicine (NLM) is the creation and
maintenance of MEDLINE, a database of journal article
citations and abstracts covering much of the world's
biomedical and related scientific literature. This

1 To whom correspondence should be addressed:
Glenn_Pearson@nlm.nih.gov. Dr. Pearson is a computer
scientist with Management Systems Designers, Inc., a
provider of on-site software development services.
2 Chief, Communications Engineering Branch;
thoma@nlm.nih.gov

resource, originally accessible by researchers, doctors
and other providers, and medical librarians, has been
available since 1998 to anyone with web access3.
MEDLINE's data is also incorporated into a number of
public and private value-added databases.

The traditional method of data entry into MEDLINE,
as into most bibliographic databases worldwide
requiring high accuracy, is by typing in all information
in duplicate. More recently, two additional methods
have been implemented that are less labor-intensive:
• Direct electronic submission from publishers; and

• Scanner-based journal imaging, with optical
character recognition (OCR). This is the MARS
approach.

The portion of journals handled by each of these two
new methods continues to grow.

1.2 The Origins of MARS I
MARS I was developed, starting in late 1996, by
NLM's Communications Engineering Branch (CEB) in
collaboration with other groups within the library.
Since installation, MARS I has seen substantial
incremental improvements in both software and
operations. Throughout 1998, a sustained throughput
of over 600 journal articles per weekday was achieved,
one third of MEDLINE’s total data entry requirements.

1.3 The Origins of MARS II
In parallel with improvements to MARS I, CEB began
research on and development of a successor system
with three major goals:
• Diminution of manual work per article, by the

incorporation of both document image
understanding techniques and improved user
interfaces;

• Replacement of the intricate MARS I file-based
mechanisms with a database system, to provide
better reliability, data integrity, and potential for
throughput growth;

3 See NLM’s homepage, www.nlm.nih.gov, for no-cost
MEDLINE access via PubMed and Internet Grateful Med.

• Replacement of DOS and Windows 3.1 16-bit
client applications with Windows 32-bit ones.
Associated with this was a migration from C to
C++, along with selective incorporation of OCX
componentware.

Since the start of 1997, MARS II has been a major CEB
project. At the outset, the project's software developers,
generally adept in C, were more heterogeneous with
respect to experience with C++ and the DevStudio/
Microsoft Foundation Classes (MFC) environment.4
Nevertheless, by fall of 1998, a first prototype of client
stations working with the database was tested. First
production deployment should occur this year.

2 Zone Checker As First Conceived

2.1 Beyond MARS I
In MARS I, the first page of each appropriate journal
article was scanned. Next, within each bi-tonal (black
and white) image on screen, a few fields were manually
“zoned”. For each, a rectangle was drawn on the
bitmap image by positioning two opposite corners, and
what we will call here a “zone label type” (specifically,
either Title or Abstract) implicitly assigned by entry
order. Only the areas within these zones were OCR’d.
Separately, all fields except the abstract entered by
typing. The title was entered both ways in order to
allow the two sources to be matched and merged.

In MARS II, as part of the goal to minimize or
eliminate manual steps, manual prezoning would no
longer be done at the scan station. Instead, scanning
would be followed by full-page image segmentation (to
locate paragraphs) and extensive auto-labeling. In
order for the latter step to become highly reliable,
multiple sources of information (or analysis techniques
or rules) would need to be consulted, some of which are
general and others of which are journal-specific. The
latter, in aggregate, represent a “journal profile”.

4 C++ was chosen over Java because of the easier skill
migration, more mature development tools, and faster
run-time performance. Also, Java’s strength is in
creating distributed remote systems, but MARS
requires the operators to be in physical proximity in
order to circulate journals, since relying upon bitmap
page images alone is sometimes inadequate for
character-level inspection. At least this is true for the
300 dpi images that give us the best OCR results; others
[10] have also found 300 superior to 400 and 600 dpi
with commercial OCR systems. As for choosing MFC,
the only real Windows-centric alternative, Borland’s
OWL, was no longer seen as competitive for new
projects not requiring Windows 3.x support.

2.2 The Research Role – Capturing
Journal Profiles

Early in the MARS II research program, a need was
identified for the development of a software tool to help
capture certain components applicable to a journal
profile. Such information, once captured, would be
analyzed and generalized to form profiles. This tool
would read TIFF images generated by the MARS I
project. It would perform these steps:

1. Open a scanned image;

2. Algorithmically locate zones. This boundary-
detection process could be informed by image
segmentation, artificial intelligence (AI), historic
journal-specific information about layout and font
styles, and, with some limited OCR-like capability,
and keyword recognition;

3. Display the zoned image, along with a table of
zone label types;

4. Allow the operator to manually assign a label type
(e.g., author, title, etc.) to each zone;

5. Store the resulting data (journal, image number,
zone sequence number and position, label type) in
tabular form as part of a journal profile.

Step 4’s verification establishes the ground truth, an
essential element when building journal profiles either
manually or using AI techniques requiring feedback or
learning (e.g., weight adjustments to an expert system
or neural net). It also allows quantified assessment of
the quality of automatic zone finding.

2.3 The Possible Production Role – Using
Journal Profiles

Contemporaneously and independently, an early
database design identified certain client modules in the
MARS II workflow [Table 1]. This design didn’t yet
clearly incorporate automated labeling. To do so, auto-
labeling must happen no earlier than “Segmentation”
and no later than “Zone Validation”.

Consider the three validation stages shown. The last
two of these, OCR and record validation, are handled in
MARS I by a single “Reconcile” module (but uploading
is a separate process). The first stage, that of “Zone
Validation”, is new. With automated labeling available,
that step was seen as the subsequent inspection and
correction of both zone boundaries and labels. Its
inclusion is necessitated by the belief that the
automated segmentation and labeling systems will not
be 100% reliable, due to imperfect OCR data, or the use
of AI systems with initially sub-optimal performance.
Potential sources of AI difficulty include undersized
training sets, incomplete coverage across the large,
stylistically-heterogeneous collection of journals, or

Table 1. Early MARS II Workflow Design [1]. Manually-operated modules (non-daemons) are in bold. While
details of the number, names, and order of modules have since evolved, and a number of processing aspects refined, the
overall concept remains generally valid.

Station Purpose
Scan Enter a new journal into the MARS II system, then scan the first page of each relevant article within.

Segmentation Locate paragraph zones within each scanned image.

OCR On each image, perform per-zone optical character recognition (OCR). As with MARS I, the Prime
Recognition 5-engine OCR system is employed, but writing to the database, not to “.pro” files.

Spell Check Remove doubt about low-confidence OCR characters if they appear within words found in a special
dictionary

Zone
Validation

Associate a type, such as "Title", with each zone of interest.

OCR
Validation

Typed correction of OCR errors. This could be per image and zone, as in MARS I, or per character
across images using “carpet” correction.

Record
Validation

Handle all remaining data entry or correction tasks. Then upload to the pre-MEDLINE machine (for
further specialist indexing, then entry into MEDLINE)

Archive Periodic off-loading of production database
inadequate zone-feature recognition and categorization.
In any event, errors in auto-labeling, if not caught early,
propagate downstream to cause more corrective work
for the final record validation or reconciliation operator.

Comparing Zone Validation with the tool design in
the previous section, it was quickly seen that this
proposed module shared a preponderance of goals and
features, particularly since one type of “tabular form”
was database tables. However, since the form of the
database was still in development, saving data in
tabular form to the file system was also needed.

The main conceptual change required by the
production role of Zone Checker was to Step 2, which
now must also allow the simpler alternative of reading
in zone location (generated by Segmentation) and OCR
data, instead of performing its own calculation.

2.4 Two Roles, One Tool
Combining the two roles seemed both parsimonious of
development effort and functionally synergistic. Thus,
from the outset, Zone Checker was shaped towards
becoming a possible MARS II component. This duality
of roles had drawbacks and advantages. One advantage
was that CEB researchers, as users of this tool and more
accessible than the production personnel, provided
early and on-going informal usability testing, and a
stream of suggestions for enhancements.

2.5 To a New Step 2
The research role’s Step 2 called for incorporating
border-finding and segmentation; the thought was to
upgrade and integrate some existing libraries. When

exploratory efforts during the first implementation
period revealed severe technical and legal hurdles, this
goal was dropped, substituting:

2a. Read in zone locations and corresponding OCR
data (characters, attributes, and bounding boxes)
from a source external to Zone Checker.

The initial source for all this information was “.pro”
files generated by the Prime Recognition OCR Server,
with “auto-zoning” enabled, so as to include the
segmentation task.

From the point of view of the production role, this
information would instead be found in the database,
generated by the OCR software daemon. CEB’s
current version of the latter, “Prod”, also uses the PR
OCR Server with auto-zoning.

As mentioned earlier, the early database design did
not indicate where auto-labeling would occur. For
convergence, it was decided to add another optional
step to Zone Checker:

2b. Algorithmically guess each zone’s label type.

For MARS II production, doing the (2b) work within
Zone Checker was seen as a provisional convenience,
predicated on the assumption that it would take no more
than a second or two per image, and thus wouldn’t slow
down an operator significantly. A quite recent direction
is to relocate the auto-labeling to a new unattended
process earlier in the workflow, which also would
incorporate a new zone-boundary correction phase.

3 Early Design Choices and First
Implementation

3.1 Selecting an Imaging Library and
Starting Application Framework

Beginning with the foregoing concept of Zone Checker
(basically a TIFF viewer and label editor with both file
and database storage), a review of commercial Win32
imaging libraries was undertaken, looking particularly
for components that support annotations atop scrollable
images5. Lead Technologies’ "Lead Tools Pro" [2] in
dynamic-link-library form was selected, which
advantageously had C++ wrappers (albeit thin ones)
around its C API. In addition, a significant amount of
sample source code was provided. In particular, “MFC
Demo” [Figure 1], a standard DevStudio-wizard-
generated code skeleton that had been fleshed out to
encompass most of the Lead Tools API, became the
starting point for Zone Checker. It was attractive
because it immediately provided an extensive core of
image file processing functionality. However, it lacked
annotation features, which were hand-merged from
another sample program [Figure 2].

5 In-house TIFF reader/writer code from another project was
also considered as a starting point, but passed up because its
conversion from 16- to 32-bit Windows was not complete in
early 1997, nor was there annotation support. Note that Zone
Checker development predated availability of Wang Imaging
for NT, used in OCX form by some other MARS II modules.

Figure 1. The MFC Demo Sample Program, MFCdem32. Shown are two open general-purpose images, and a
few of the available image processing operations.

Figure 2. The Annotation Sample Program,
Annot32. The floating toolbar shown for drawing
annotations is discussed in a later section. Most of
these annotation types are specializations of rectangles,
such as hotspots, buttons, text boxes, highlights, and
redactions (black-outs). The “run” and “design” modes
became the internal basis for Zone Checker’s “Adjust
Labels” and “Select Zone” modes, respectively.

3.2 Going with the Flow
With a compendium of third-party code such as the
Lead Tools library, there are always some things that
are made trivial or straightforward for the programmer,
and other things that are difficult. Part of initial
exploration is to identify these fairways and mine
fields, and try to drive the design in such as way that
the needs of the application can be satisfied by
operations within the friendly landscape. This is as in
contrast to a design philosophy, perhaps more
appropriate for mass-market commercial software, in
which the aesthetics and affordances6 are prespecified
in the absence of implementation considerations.

3.3 The Trade-offs of Featurism
Zone Checker’s dual roles entailed supporting both an
emerging database and existing file-based storage. As a
“Swiss Army knife”, this flexibility allowed it to be
used as a go-between, for instance, to load historical
file-based data into the database. The cost is that of
software bloat [3], not just in terms of memory and hard
drive footprint, but in terms of presenting users with a
rich but complicated feature set, some of which are
unused by certain user classes. An on-going effort
involves eliding bloat wherever possible through
feature re-packaging, hiding, disabling, or deletion.

For instance, the “Annotations” toolbar is very
helpful for the developer in exploratory try outs of
different on-screen representations. But, because marks
drawn with it have no tie-in to OCR data, it is not
helpful for most end-users. A new menu item was
therefore introduced to toggle its presence7. This
toggle is inaccessible to production users, for whom the
toolbar is always hidden.

3.3.1 How Many Page Views?
“MFC Demo” provided a multiple-document user
interface (MDI), so the first question was whether to
reimplement it as a single document interface (SDI). It
was left as MDI, mainly to minimize up-front
development time and risk. Also, it was known that
occasionally both the first and second pages of a journal
article were scanned, because the abstract ran over to
the second page. In such cases, the ability to see and
touch both pages at the same time could be helpful.
However, sticking with MDI caused later development
time penalties, in working with the more complex doc-
view internal structure and in making the seldom-
needed multiple-document aspects less intrusive to the
user. Most other MARS II modules that display images
use form-based SDI.

6 That is, GUI ways of offering control of functionality.
7 This toolbar refuses to be hidden in a Windows API sense,
so it’s moved past the screen edge to hide it.

3.3.2 The Triage of Imaging Features
The broad outline of MFC Demo’s user interface was
that provided by the DevStudio/MFC wizard, and
initially retained by Zone Checker (until the later make-
over of Section 5.1). But a few wizard-provided
features, such as the most-recently-used file list, were
removed because they seemed hard to extend to
database interactions.

While MFC Demo ties “File/New” to a TWAIN-
compliant local scanner, this capability was dropped
from Zone Checker as unneeded and a potential support
headache. Instead, the early Zone Checker user
invoked a standard File Open dialog to choose an
existing MARS I image, read-in via Lead Tools TIFF
decompression. To enhance bitmap readability, the
default display mode of scalable images was changed to
scale-to-gray; the bitonal file image itself remained
unchanged in normal usage.

Of the many image processing algorithms found in
MFC Demo, those clearly irrelevant to Zone Checker
(e.g., artistic effects and “slide show” multi-image
transitions) were dropped. A few that seemed
particularly germane (e.g., deskew, flip) were made
more prominent in the top menu structure. Conversely,
ones anticipated to be of infrequent use were buried
deeper into the menu hierarchy under a general title of
“Specials”, an example of a bloat-hiding strategem.

MFC Demo had zoom menu items, but they weren't
well matched to our needs. An early change (that
matured through a number of improvements) was to
introduce a separate “Zoom” bar.

3.3.3 Juggling Multiple Purposes with
Setup Property Pages

Since Zone Checker had both research and production
roles, it was obvious that configuration control was
important. This first took the form of File/Open Setup
and File/Close Setup menu choices. As its name
suggests, Open Setup controlled what additional
processing steps occur associated with opening each
image. Initially, Open Setup provided a single dialog
for locating the corresponding OCR file (e.g., 1.pro for
1.tif), the only source of zone-specific OCR
information at the time. This file might be in the same
directory as the image, or in a directory location given
in the early database. The contents of the property page
was soon expanded to hold database log-on and
database vs. file-system-only choices. Then a second
tabbed property page appeared for the feature discussed
next. Close Setup saw similar incremental growth.

3.4 Communicating Transient Operations
During Image Opening

As each image was opened, a configurable series of
processing steps, of perhaps several seconds total
duration, need to be applied to it. What should be

displayed while this occurred? While a modal
hourglass cursor, possibly-modeless progress bar, or
other animation were considered, a more informative
display was sought. A common alternative, text in the
status bar, would mutate too quickly to be discernable.
Instead, a custom dialog briefly appears [Figure 3].

is possible). Since the zone boundaries given by OCR
were also so aligned, this was convenient from a
structural standpoint. From the GUI point of view, the
rectangle is much easier to manipulate than the main
alternative, a polygon annotation. The latter is more
flexible, allowing, for instance, picking out a particular
few sentences from a paragraph, but positioning all the
control points would be burdensome for the user, and
tricky for the developer in relating to underlying OCR
data. Instead, there could be multiple rectangles of the
same type, linked implicitly by relative order or
explicitly. Furthermore, a zone denoting a small
snippet of text might be overlaid on a larger zone.

It was decided that each zone could be only of one
type, and zone splitting or overlays employed as needed
to work around any restrictions this might impose.
Each zone type is either “major”, represented by a
particular solid color (“translucent” in Lead Tools
parlance), or “minor”, with “clear” interior and a
colored border, most suitable for overlaying on major
zones. An example is shown with major zones [Figure
4]. A fixed palette of colors relating to particular zone
types (later called a “zonescape”) was developed.
Colors selected were spread out in a spectrum, with
zone types varying from red to purple corresponding to
where they most commonly appeared on a page. Most
colors were fairly bright. For differentiation, colors for
unknown zone type or body text were pastel.

Zones that were most likely garbage were specially
rendered to be unobstrusive. For instance, type "White-
out Blem (nontext)" means that the zoned portion of the
original page has no actual text, and typically no actual
graphical content either. If the OCR did report any text,
it is a misrecognition; for instance, it is not uncommon
for zones around border or gutter shadows to have
phantom characters like “i” or “I” in them. Zone
Checker visualizes this distinction with a subtle hint:
Figure 3. Steps during Image Opening. The left
column shows requested steps, the right those that are
completed, with processing in top to bottom order.
This shows the current version of this dialog; the
original didn’t have the extra text fields, which
indicate, for instance, whether labeling is done by the
built-in rules or by reading an external file. There is a
setup property page of similar appearance, with a
single column of checkboxes, in which steps may be
requested or not. The despeckle and deskew steps are
seldom needed; MARS II images will be already
deskewed. It is the next-to-last labeling step that is
most frequently toggled in research activities.
3.5 Enumerating Zone Types – Rich
versus Minimal

MARS I reports a dozen-odd document field types to
MEDLINE. On the other hand, one alternative method
of document input to MEDLINE, electronic submission
of structured documents directly from publishers to
NLM, defines about fifty SGML tags. As part of
developing Zone Checker, a rich zone descriptive
system was defined, closely modeled on the latter but
with some additional distinctions. This is flexible and
allows AI training to categorize types that may be more
important for exclusion than inclusion. Nevertheless, a
minimal set is usually of most immediate interest.

3.6 How should a Zone Appear? The First
Zonescape

Early on, the Lead Tools “rectangle annotation” was
chosen as the representation for a zone. This is aligned
with the image edges (although programmatic rotation

With no OCR text, the zone is shown in light gray
crosshatches on opaque white; otherwise, the
crosshatches are golden.

3.7 Implementing Zones
A great deal of early effort was being able to read in the
“.pro” data, associate it with internal data objects, and
represent it on screen using the rectangle annotation.

Atop a visible “gell” zone is a totally transparent “hot
spot” zone of the same size. A click on the hot spot
routes an event (including a hot spot ID) to a Lead
Tools-specific callback function within application
code. In our case, the hot spot ID allows discovery of
the corresponding “Zone Object”, the overall manager
of a specific zone’s annotation, OCR data, and other
information. This information is used to position the
zone-type selection popup menu, and is revised if the
user changes the zone’s type, which causes an
immediate change to the zone’s color.

4 Under the Hood
As with many software projects, some time-consuming
aspects of Zone Checker development had a relatively
modest impact on the user interface.

4.1 Automatic Guessing of Zone Labels.
Zone Checker served as a research testbed for “first
generation” rule-based algorithms for automated
labeling of zones [Appendix]. If enabled, these built-in
C++ rules would activate as each image was opened
and the corresponding OCR data automatically read in.

4.2 Saving Zone Features and Labels
It became valuable to be able to save the zone labels, as
well as certain of the calculated features, to files,
respectively called “.lab” and “.zon” files. These could

then be used to train external AI labeling systems, such
as a neural net [4]. Later, it became possible for Zone
Checker to read .lab files as well; and analogous
read/write actions using the database as the persistent
label store were added. The writing of this information
occurred as each image was closed, which necessitated
adding more property pages to Close Setup.

4.3 Interfacing to the Prototype Database
To get images and store results, Zone Checker connects
automatically on start-up to a MARS II-specific
database, unless configured to use only the file system.
The initial test database for Zone Checker was a local
MS Access one, accessed via MFC's ODBC class
wrappers. But within six months, Zone Checker had
migrated to a small SQL Server 6.5 database elsewhere
on the LAN, populated with MARS I images and
information, suitable for testing and initial profile

Figure 4. The Current Appearance of Zone Checker. Zone coloring is discussed in the main text. Note in
particular the small “White-out Blem” zones near the left edge, with their faint crosshatches. The frame shows three
toolbars, “Zoom” at top, “Main” at right, and “Specials” at bottom. The latter is usually hidden. The buttons in
Main are, from top, Open Issue, Next Page, Help, the three mutually-exclusive modes (“Adjust Label”, “Set
Reading Order”, and “Select Zones”), and additional buttons that become enabled in select-zones mode: Split
Horizontally, Split Vertically, and (not yet implemented) Merge.

development. ODBC was phased out in favor of
RogueWave's DBTools.h++ [5] with its associated SQL
Server driver. Subsequently, the design and content of
the database continued to evolve as many complicated
design issues were resolved. Rogue Wave/C++
wrapper classes for most database tables were coded
and incorporated into a shared library used by Zone
Checker and other modules. Windows NT became the
platform target for both database and clients.

5 Recent GUI Improvements
A number of usability enhancements have occurred
within the last six months.

5.1 Redesign of Main Menus and
Workflow

A GUI redo [Figure 5] streamlined and refocused the
application towards production. The items within the
main “File” menu were parceled out into separate new
“Issue”, “Page”, and “Setup” topics. The latter merged
File's setup options [Section 3.3.3.] with those (seldom
appropriate to change, such as scale-to-gray) of
“Preferences”, and sequestered them from production
operators. To reflect their non-production status, “Edit”
and “Image” were renamed “EditTools” and
“ImageTools” and moved to the right side of the
window frame; EditTools got the various print-related
functions from “File”. The new “Zones” menu (used as
an example in Figure 6) absorbed general-use
operations from “Annotations”, leaving behind

researcher-only functions. The main toolbar was split
into “Main” and “Specials” (as shown in the earlier
figure), and a show/hide feature for the latter added to
“View”. Subsequently, View became the repository for
general-user options, such as mini-icons [6] on the
menus [Figure 6] and toolbar button size.
An important workflow improvement was to move
away from generic {File/Open, File/Close} processing
to an {Open Issue, Go to Next Page} paradigm for both
file-system-only and database configurations. But the
original random-image-access method is still available
for special research purposes, now as Page/Open.
Figure 6. Mini-Icons on Menus. Every menu item
that has a corresponding toolbar button is decorated
with a small version of the same image. The user
exercises View/Options to turn this feature on or off.
Figure 5. Redesigning the Top Menu Structure and its Accessibility by Class of User. The top row has the
original left-to-right menu order. The “novice” versus “advanced” production distinction is so far only theoretical.
A domain group was established for research users, and the current user’s membership within it checked at Zone
Checker startup. Appropriate features are disabled for non-researchers. In addition, the Setup menu solicits a
special administrative password. This approach was taken so that a production user with a setup problem could ask
the local manager to intervene without requiring the user to log off. Note that operations with the MARS II database
require user pre-registration.

5.2 Ways of Visualizing Zone Types
For a long time, the single fixed zonescape (label
palette) discussed earlier was the only feedback to the
user as to zone type. The total palette mapping could
be viewed within on-line help or as a color print.

5.2.1 A User Designed Zonescape
Users may differ in their color acuity and preferences.
To accommodate this, as well as facilitate usability
testing to optimize the default zonescape’s colors, a
second, user-definable zonescape was invented.
Management of these two zonescapes occurs in the new
View/Options dialog [Figure 7]. Further zonescapes
may be added in the future.

5.2.2 Zone Types Shown as Text
When in “adjust label” mode, it was felt that textual
feedback in addition to colors would be helpful. Figure
8 shows one very early idea. Another was placing a
check next to the zone-side popup menu item (but this
is less useful with a multilevel menu). A third
possibility was having a toolbar palette of color
swatches and zone labels, analogous to our zonescape-
setting property page, but always visible.

The direction pursued was instead to have “fly-over”
help when moving the cursor over a zone. While the
text, e.g., “Abstract”, could have been put into the
status bar, it was decided that a tool tip rectangle
immediately below the cursor would lessen eye
transversals. Since this appears and disappears
automatically, and is repositionable by moving the
cursor, it doesn’t get in the way of the underlying
bitmap text.

Figure 7. Zonescape Management. Only the set of 27 “major” zones (those with solid colors) are shown as
swatches that can be manipulated at this time. Pressing a button to the left of a zone brings up the standard
Windows “color chooser”. A new color can be selected therein via several ways, unless the zonescape is the
read-only default one. The color chooser has a set of “custom color” boxes, which here is used as a most-
recently-visited list. This makes it easy to copy colors between zone types or between zonescapes.

Figure 8. The Early “Ears” Concept. In this
mockup, each zone was decorated with a two-button
“ear”. One button holds a zone type abbreviation: “Ti”
for title, “Au” for author, “Af” for affiliation, “Bo” for
body text; etc. A suffix digit could also appear, for
instance, “Au1”, “Au2” if there were two author zones
separated by a non-author one. “…” was used to
indicate, “this zone is a continuation of the previous
zone’s label.” Continuations were further indicated by
leaving the abutting top and bottom borders open,
except at the corners. (This style is not part of the
available Lead Tools repertoire; perhaps it could be
drawn by overlaying an opaque white line on a
rectangle’s border.) The other ear button showed a
labeling confidence level, in the range 0..9. (Labeling
confidence values are not yet available.) An ear is also
a hotspot, so that the operator can override the guessed
value. In such a case, the confidence digit is replaced
by a checkmark. Current Zone Checker handles labels
and reading order as more distinct modalities than the
ears concept. But the implemented reading order
display, discussed next, is stylistically similar.

5.3 Reading Order
It’s often necessary to determine the “reading order”
among certain zones, particularly those of the same
label type whose OCR text is to be combined
downstream. This is particular true for same-type
zones that are not adjacent, such as those containing
text flowing from one column to the next, and thus not
candidates for merging. The normal OCR system does
not deduce full-page reading order. There is an
optional mode to use Xerox’s Textbridge engine to
attempt such a sort, but this is reportedly problematic.
In general, even with content understanding, it is
difficult for humans to always agree on the proper
reading order encompassing all text elements on a page.

Zone Checker would instead support manual partial
ordering, by letting the user define one or more zone
groups, and set the order within each. Zone Checker
would automatically provide a default full-page group.
Within this group, ordering is top-to-bottom by top

zone edge, then left-to-right order by left edge. This
ordering calculation is performed when zones are first
read in, and on subsequent pertinent events such as
zone splits. Placing a zone in a user-specified group in
effect hides the default group ordering.

5.3.1 Initial Interaction Approach
The first implementation was as a new function within
the existing “select zones” mode. The user selects a
zone, then hits a “reading order” button on the main
toolbar. This brought forth a dialog box, with two
fields to view and set a “group number” (greater than
“1” for user-defined) and order within group. As this
proved extremely tedious, a third mode, “reading
order”, was conceived. Here, every zone would have
its own widget. This would display on its face the
value of its current reading order, and could be clicked
upon to alter it. Displaying reading order as text
seemed more straightforward to present to users than
alternatives such as drawing arrows between zones.

5.3.2 Widget Choices – On the Button
As widget candidates, Lead Tools provides a number of
annotation types, such as stamp, note, or the familiar
rectangle. But most compelling seemed the button
annotation with the usual Windows beveled-button
look. The opaqueness of the button is helpful. Another
advantage is that it intrinsically responds to click
events, unlike rectangles for which one must maintain a
hotspot separately. (Internally, button events would be
associated with a particular zone rectangle by using a
programmer-defined numeric “tag”, just like the
existing zone hot-spot/gell implementation.). A
button’s text and the text color can be changed, but the
font and its size are that of the current system font. The
background color is the current Windows frame color.

Like all annotations, the button object is inserted into
the “annotation container” that holds the zone
rectangles. Thus, zooming the image, which re-scales
all container objects, resizes the button itself. But, as
noted, not the text. Thus, the button size must be
chosen to be large enough so that centered text won’t be
clipped at the edges when an image is zoomed out and
the button appears tiny. The size specified is currently
independent of text. (Further improvement to button
sizing, possibly with font metrics lookup, is possible.)

The default zone-relative placement of buttons
should obscure as little “important” bitmap text as
possible. It might be inside or immediately outside the
border. The worst place inside is probably the upper-
left corner. The right edge appeals over the left, since
text is usually left-justified, but often not right-justified.
Arbitrarily, the buttons are placed in the upper right
corner; lower right or the centroid might work, too.

The use of numerals for both reading group and order
within group was problematic. After experimenting
with a “[2] 3” notation, capital letters were substituted,

leading to a “A3” notation for group A, order number 3.
“A” is the first user-selected reading group (internal
number 2). A missing letter denoted the default group,
e.g. “3”. The dialog box was altered to reflect this style
(Figure 9). On the buttons themselves, the default
group text is in black, the user-set groups in red. (It
might be interesting to color code each user-set group
differently, to see if that is helpful or confusing.)

5.3.3 Expedited Interaction
Within the “reading order” mode, it would be better to
just touch each zone in turn to set the order, and let the
system assign the order numbers. Rather than add this
to the button functionality, it is touching the non-button
part of the zone that does this. Then button presses are
merely for corrections, a slower but infrequent process.

This is a little complicated, given our two-part
reading-group/reading-order bifurcation. It was
decided to program the interaction this way: the first
time one enters reading-order mode for a given image,

zone touches cause sequential numbering within group
“A”. One leaves that reading group by going to one of
the other modes besides reading-order. Re-entering
reading-order mode moves to group “B”. This
approach, while a little awkward, avoids introducing
more controls, and seems reasonable when in the
projected usage, few images will have more than one
user-defined reading group.

If a zone is tiny, the fixed-size button placed strictly
in the upper right corner totally obscures it, denying
access to any non-button zone area to click on for order
setting. A related problem: a small zone at the bottom
or left edge has its button clipped at the image bounds.
For these cases, button placement is shifted sideways,
and/or aligned with a different zone corner.
Nevertheless, each button is positioned independently,
so buttons of adjacent zones can overlap. This may not
be a problem in practice, since tiny or near-border
zones seldom require user concern about reading order.
Figure 9. Displaying and Setting Reading Order. In this example, the two paragraphs near page bottom
were assigned their own reading group “A” using the “expedited interaction” method of clicking the body of
each in turn. If the user then had second thoughts about the right-most paragraph, clicking on its button brings
up the dialog box shown, for correction. Selecting “blank” in the reading group field makes the order field
read-only and automatically fills in the default ordering value (evidently 15 or 16 in this case).

6 Further GUI Developments in Progress

6.1 Correction of Zone Types
In adjust-labels mode, clicking on a particular zone
brings up, immediately to its left, a popup menu. This
predominately 2-level menu offers the entire set of
possible zone types. Again, we face the issue of a rich
versus sparse representation. With a large set of
available zones, finding the ones in this menu of most
importance because more problematic. In the long run,
making this menu’s contents dynamic, thus settable at
runtime, instead of compile time, would allow both
flexibility and concision. A tree control has been
prototyped that reproduces the rich menu hierarchy and
would allow a user to mark each zone type therein as
skipped (hidden), optional, or required.

6.2 Zone Splits and Other Manipulations
From a GUI-design perspective, the area of greatest
difficulty may be in splitting zones horizontally or
vertically, or otherwise extracting portions of a zone.
Splitting cannot happen at any arbitrary pixel, but only
where the underlying OCR data permits. Furthermore,
for vertical splits, it appears that some awareness of the
underlying OCR data needs to be brought to the user’s
attention in a dynamic way. Zone “direct
manipulation” [7] for splitting may be better done via
mediating devices, such as sliders, that can be easily
paired with OCR data display. Mediated horizontal and
vertical splitters are being prototyped.

In Zone Checker, it is possible to create a new zone
from thin air, and to alter the shape (or delete) existing
ones. However, the degree of integration between
PRO-specified zones and resized/new zones is rather
weak. Specifically, changing a zone's shape has no
effect on the extent of its OCR data, nor do new zones,
used as overlays, inherit OCR data from their parent
zone. This is an area for future consideration. Of more
immediately need is the ability to merge adjacent zones.
This will be non-trivial when they are side-by-side and
individual OCR text lines must be aligned and
appended.

7 Conclusions
Zone annotations are convenient “handles” for
manipulating the underlying OCR data, and several
ways of doing so have been presented. In this matter,
as in many software design issues, much of the effort
goes into finding the right balance between contending
goals. We have retraced one exploration, that sought
the balance between production and research needs,
between a focused versus extensive feature set, and
between engaging design concepts and implementation
pragmatics. The tool thus created has multiple prongs
and enjoys multiple purposes in furthering the next
version of MARS.

References
[1] Ford, Glenn, MARS Technical Specification 0.0B,

CEB internal document, 12/2/1996
[2] Lead Technologies, LeadTools API Manual for

Pro Express, v. 7.0, Charlotte, NC, 1997.
[3] Kaufman, Leah, and Brad Weed, “Too Much of a

Good Thing? Identifying and Resolving Bloat in
the User Interface”, SIGCHI Bulletin, 32 (4),
ACM, Oct.,1998, pp. 46-47.

[4] Le, Daniel, Jongwoo Kim, Glenn Pearson, George
Thoma, “Automated Labeling of Zones from
Scanned Documents”, SDIUT’99, April, 1999.

[5] Rogue Wave Software, DB Tools.h++ User’s
Guide and Tutorial, Corvallis, OR, 1998.

[6] DiLascia, Paul, “New Interface Look: Cool Menu
Buttons”, Microsoft Systems Journal, Jan., 1998.

[7] Shneiderman, Ben, Designing the User Interface,
Addison-Wesley, 1987.

[8] Hauser, S., personal communications, CEB, 1998.
[9] NLM, List of Serials Indexed for Online Users,

ISSN 0736-7139, 1997.
[10]Kanungo, T., G. Marton, O. Bulbul, Paired Model

Eval. of OCR Algor., LAMP-TR-030, Inst. Adv.
Comp. Stud., U.Maryland, College Park, Dec. 1998

Appendix. Built-in Auto-Labeling
Experience with these mostly-journal-independent “first
generation” rules (Table 2) indicate that they were quite
good at detecting white-out zones, albeit with some
mislabeling of in-border page numbers as such. They
were moderately good at the zones of most MEDLINE
importance, depending on the degree to which the
journal style is a common one. For instance, in a brief
test with 10 autozoned page images from a single “easy
format” journal issue, all title zones were correctly
auto-labeled, as were 9 of 10 author zones. However, 3
of 10 affiliations were tagged as authors. The main
abstract zones were correctly tagged in 10 of 11 cases,
but 3 abstracts had a short last sentence, separately
zoned, that was missed. The two mentioned problems
might be ameliorated by more extensive interzone
comparisons, and by further enlargement and
refinement of the word lists beyond those in Table 2.
The separately-developed “second generation” system
[4], which, for example, has a word list for Affiliations
based on historic data that is an order of magnitude
larger than Zone Checker’s, shows the effectiveness of
these strategies. Other aspects that were nascent here
and full-bodied in [4] include a numeric confidence
value associated with label discovery and a multi-phase
convergence upon the set of labels for a page. But
perhaps most trenchantly, the advantages of aligning
algorithms more closely with specific journal styles is
manifest.

Table 2 (a-d). Built-in Zone Feature Recognition and Labeling Rules.

When an image’s OCR and zone-location data is read into Zone Checker, the default label given to all
zones is "Unknown Content". An quick software screening sees if this consists only of MARS I’s
manually-zoned title and abstract. Otherwise, auto-labeling analysis begins. Each zone is handled
independently until the very end. For each, a group of quickly-calculated features are found in
unnormalized and normalized forms. (The rightmost column of Table 1 in [4] enumerates those
normalized features selected for export to a neural net system; others calculated include zone order, number
of words, and number of initials, e.g., “ A.”). Next, a series of if-then-else tests proceeds (as given by row
order in the subtables below) until a label is assigned. The most important labels for MEDLINE are shown
in bold. A final limited revision step uses zone interdependencies: if no abstract was found above, one of
the unknown or general-text zones in a particular part of the page may be relabeled as abstract.

a. Zones with Few or No Valid Characters. A long, thin zone without characters may be a rule line or
similar separator. Otherwise, it’s probably a “white-out blem”, typically a black gutter or page edge
artifact. “White-out Text” is most often text fragments on the facing page across the gutter. A page
number is another possibility.

Constraints on OCR
Text in Zone

Constraints on Zone Location Assigned Zone Label Type

Overlaps central 2/3rds of image; > 1" long and
< 1" wide (either orientation)

Rule Line/SeparatorNo characters

otherwise White-out Blem (non-text)

Entirely low-confidence
characters (< 7 out of 9)

Fully within 1" of any image edge White-out Blem (non-text)

Single numeral Ditto Page Number
Other single character Ditto White-out Blem (non-text)

Fully within 1" of the left or right edge White-out Text> 1 characters
Fully within 1" of the top edge or 2" of bottom Page Number

b. General Cue Word Matches. The matching here and in (c.) is intentionally case insensitive. A
“delimited” cue word or phrase is on a line by itself, or followed by a space, semicolon, period, colon, or
dash. A few dozen common biomedical headings are recognized, e.g., “chemicals”, “enzyme assays”,
“experimental techniques”, “growth conditions”, “materials”, “media”, “methods”, “mice”, “production
of”, “reagents”, “strains”.

Assigned Zone Label Type…OCR Text in Zone Constraints on Text
…if one line of text …if multiple lines

“received” or “first received” Begins zone; Can skip any one
prefix character, like “(”

“revised” or “accepted” Contained in zone

Date Received Or Accepted

“abstract” Begins zone; Delimited Abstract Heading Abstract
“keywords” or “key words” Begins zone; Delimited Keyword List
“introduction” Begins zone; Delimited Introduction Heading General Text
Certain biomedical headings Begins zone; Delimited General Heading General Text

c. Assignments for Central Zones. These final assignments are for zones that width-wise overlap the
middle 2/3 of the image. If a label is still not assigned at the end of this process, it is left as unknown.

OCR Text in Zone Constraints on Text Additional Constraints
on Zone Location

Assigned Zone
Label Type

“case report”, “case reports”,
“comentary”, “editorial”,
“opinion”, or “notes”

Begins zone; Delimited In top 25% (2.75") of
image

Section Name
(if single line of
text), or Title

-- Average point size of top-
confidence characters > 14

In top 40% (4.4") of
image

Title

c. continued next page

OCR Text in Zone Constraints on Text Additional Constraints
on Zone Location

Assigned Zone
Label Type

Year, month (or its abbrev.),
“journal”, “j.”, “volume”, “vol.”,
“number”, or “no.”

Contained in first line;
Delimited

In top 1.5 inches* Header*

See Figure Xd See Figure Xd Top edge below 1";
bottom above 50% (5.5")

Affiliation

> 3
lines

Top edge below 6" Correspondence
To

“to whom correspondence” or
“author to whom
correspondence” or
“corresponding author”

Begins zone; up to 3
prefix characters can
be skipped;
Delimited

Affiliation

Initials (e.g., “ X.”) or commas
(or “and” counted as if a comma)

On average > 1 initials per 20
characters or > 1 commas per
20. Not more than 1
occurrence of “and”

Fully in top 40% Authors

Highest confidence characters Average font size > 8 and < 13 General Text
* further subcategorized by size and position as Left, Right, Center, or Full Header

d. Cue Words for Author Affiliation. Affiliation zones are recognized by a coarse location screening
followed by cue word matching, with the heuristic that there must be at least two cue words found on
average per OCR line. A match constraint is that the first word of the OCR text must be capitalized (except
suffix matches). String routines were built that match in the face of OCR errors due to common character
misrecognitions [8]. Using reference books, a specialized cue word list was created, made up of the
following groups (with varying degrees of coverage of non-English words), each with at least the number
of items shown in the right column. NLM-indexed biomedical journal titles were used as a source for
biomedical fields of study [9].
Category Representative Subcategories, and Examples in Quotes Items

General nouns for geopolitical entities “Commonwealth”, “State”, “Republic”, “Ville”, “Town” 40
Country names, with variant spellings 300

States or provinces of US (including 2-letter abbreviations),
Canada, Mexico, and China.

300

Major cities (chiefly world capitals)

Specific geopolitical descriptors

Common town suffixes (mainly US). …“ton”, “mouth”, “stad” 50
Bodies of water and shorelines, e.g., “Rive”, “Porto”, “Springs” 180
Terrain (“Mt.”, “Valle”, “Serra”) 100

General nouns for geographic features.
These often appear as part of a multi-
word town or organizational name Human constructions (“Depot”, “Church”, “Mill”) 40

Compass directions (“Western”, “Ost”, “Southeastern”) 40General geographic adjectives
Relative position or size (“Upper”, “Outer”, “Mid”, “Greater”,
“Petit”)

40

Specific national, regional, or body-of-
water adjectives and nouns

“British”, “European”, “Caspian”
“Scandinavia”, “Atlantic”

60

Honorific titles. Here used as part of a
hospital or institutional name.

“King”, “Colonel”, “Saint” 60

Common religious nouns, including
proper names

“Order”, “Mercy”, “Maria”, possessives like “Paul’s” 60

Other Adjectives applicable to
countries, towns, or hospitals, such as
denominational terms

“Novo”, “Royal”, “Adventist”, “United” 50

Organization descriptors “Dept.”,“College”, “Hospital”, “Center”, “Universidade” 40
Nouns, e.g., “Surgery”, “Pediatrics”, “Genetics” 70
Suffixes like “…ology” in several languages 5

Biomedical fields of study and
diseases

Adjectives, e.g., “Health”, “Prenatal”, “Cellular”, “Microbiol” 80

